Hermitian-einstein Metrics for Vector Bundles on Complete Kähler Manifolds

نویسندگان

  • LEI NI
  • HUAIYU REN
چکیده

In this paper, we prove the existence of Hermitian-Einstein metrics for holomorphic vector bundles on a class of complete Kähler manifolds which include Hermitian symmetric spaces of noncompact type without Euclidean factor, strictly pseudoconvex domains with Bergman metrics and the universal cover of Gromov hyperbolic manifolds etc. We also solve the Dirichlet problem at infinity for the Hermitian-Einstein equations on holomorphic vector bundles over strictly pseudoconvex domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Inhomogeneous Einstein Metrics on Sphere Bundles Over Einstein-Kähler Manifolds

We construct new complete, compact, inhomogeneous Einstein metrics on S sphere bundles over 2n-dimensional Einstein-Kähler spaces K2n, for all n ≥ 1 and all m ≥ 1. We also obtain complete, compact, inhomogeneous Einstein metrics on warped products of S with S bundles over K2n, for m > 1. Additionally, we construct new complete, noncompact Ricci-flat metrics with topologies S times R bundles ove...

متن کامل

Resolutions of non-regular Ricci-flat Kähler cones

We present explicit constructions of complete Ricci-flat Kähler metrics that are asymptotic to cones over non-regular Sasaki-Einstein manifolds. The metrics are constructed from a complete Kähler-Einstein manifold (V, gV ) of positive Ricci curvature and admit a Hamiltonian two-form of order two. We obtain Ricci-flat Kähler metrics on the total spaces of (i) holomorphic C/Zp orbifold fibrations...

متن کامل

Degeneration of Kähler-Einstein Manifolds I: The Normal Crossing Case

In this paper we prove that the Kähler-Einstein metrics for a degeneration family of Kähler manifolds with ample canonical bundles GromovHausdorff converge to the complete Kähler-Einstein metric on the smooth part of the central fiber when the central fiber has only normal crossing singularities inside smooth total space. We also prove the incompleteness of the Weil-Peterson metric in this case.

متن کامل

ar X iv : m at h / 99 08 03 5 v 1 [ m at h . D G ] 9 A ug 1 99 9 1 Flat connections , Higgs operators , and Einstein metrics on compact

A flat complex vector bundle (E, D) on a compact Riemannian manifold (X, g) is stable (resp. polystable) in the sense of Corlette [C] if it has no D-invariant subbundle (resp. if it is the D-invariant direct sum of stable subbundles). It has been shown in [C] that the polystability of (E, D) in this sense is equivalent to the existence of a so-called harmonic metric in E. In this paper we consi...

متن کامل

Quaternionic Kähler Manifolds with Hermitian and Norden Metrics

Almost hypercomplex manifolds with Hermitian and Norden metrics and more specially the corresponding quaternionic Kähler manifolds are considered. Some necessary and sufficient conditions the investigated manifolds be isotropic hyper-Kählerian and flat are found. It is proved that the quaternionic Kähler manifolds with the considered metric structure are Einstein for dimension at least 8. The c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000